Mathematical Foundations of Infinite-Dimensional Statistical Models Chapter 3.1.3 ~ 3.1.4

Evarist Giné and Richard Nickl

Presenter: Yongchan Kwon
Department of Statistics, Seoul National University, Seoul, Korea ykwon0407@snu.ac.kr

TL;DR

- Groundworks for showing (i) almost sure convergence and (ii) L^{p} convergence of independent sample bounded processes are given.
- Advanced machineries, symmetrization and randomization techniques, are introduced. They allow general results and weaken assumptions.

Reviews

- In section 3.1.1, we simply set up some notations and define empirical processes.
- In section 3.1.2, we looked into two main types of inequalities: (i) concentration inequalities for sums of independent random variables and (ii) entropy bounds type inequality for the expected value of maximum of random variables.
- The representative examples are the celebrated inequalities of Bennet, Prokhorov, and Bernstein in Theorem 3.1.7 and the basic maximal inequalities in Theorem 3.1.10.
- In the section 3.1.3 and 3.1.4, we cover some inequalities for (sample bounded) stochastic processes and some advanced machinery.

Contents

(1) 3.1.3 The Lévy and Hoffmann-Jørgensen Inequalities
(2) 3.1.4 Symmetrisation, Randomisation, Contraction

3.1.3 The Lévy and Hoffmann-Jørgensen Inequalities

Notations

- T : a countable index set. (quite strong)
- $I_{\infty}(T)$: a set of real bounded functions defined on T with the supremum norm

$$
\|x\|_{T}=\sup _{t \in T}|x(t)|
$$

which is measurable.

- $X(t)$: a stochastic process with index set T.
- We say that a process is $\operatorname{SBC}(T)$ if almost all its sample paths are bounded and the set T is countable.
- A symmetric process if $\operatorname{Pr}\{Y \in A\}=\operatorname{Pr}\{-Y \in A\}$ for all A in the cylindrical σ-algebra.
- Given a sequence of independent sample bounded processes $Y_{i}, i=1, \ldots, n$, indexed by T, we set

$$
S_{k}=\sum_{i=1}^{k} Y_{i}, i=1, \ldots, n, \quad \text { and } \quad Y_{n}^{*}=\max _{1 \leq i \leq n}\left\|Y_{i}\right\|_{T}
$$

Lévy's inequalities

Theorem (Theorem 3.1.11)
Let $Y_{i}, i=1, \ldots, n$, be independent symmetric $S B C(T)$ processes. Then, for every $t>0$,

$$
\operatorname{Pr}\left\{\max _{1 \leq k \leq n}\left\|S_{k}\right\|_{T}>t\right\} \leq 2 \operatorname{Pr}\left\{\left\|S_{n}\right\|_{T}>t\right\}
$$

and

$$
\operatorname{Pr}\left\{Y_{n}^{*}>t\right\} \leq 2 \operatorname{Pr}\left\{\left\|S_{n}\right\|_{T}>t\right\}
$$

In particular,

$$
E\left(\max _{1 \leq k \leq n}\left\|S_{k}\right\|_{T}\right)^{p} \leq 2 E\left\|S_{n}\right\|_{T}^{p}, \quad \text { and } \quad E\left(Y_{n}^{*}\right)^{p} \leq 2 E\left\|S_{n}\right\|_{T}^{p},
$$

for all $p>0$.

Lévy-Ottaviani's inequalities

Theorem (Theorem 3.1.12)
Let $Y_{i}, i=1, \ldots, n$, be independent $S B C(T)$ processes. Then, for every $u, v>0$,

$$
\begin{aligned}
& \operatorname{Pr}\left\{\max _{1 \leq k \leq n}\left\|S_{k}\right\|_{T}>u+v\right\} \\
& \leq \frac{1}{1-\max _{k \leq n} \operatorname{Pr}\left\{\left\|S_{n}-S_{k}\right\|_{T}>v\right\}} \operatorname{Pr}\left\{\left\|S_{n}\right\|_{T}>u\right\},
\end{aligned}
$$

and for all $t \geq 0$,

$$
\operatorname{Pr}\left\{\max _{1 \leq k \leq n}\left\|S_{k}\right\|_{T}>t\right\} \leq 3 \max _{k \leq n} \operatorname{Pr}\left\{\left\|S_{k}\right\|_{T}>\frac{t}{3}\right\}
$$

The authors drop the subindex T from the norms but I keep it for clearer notations.

Two inequalities

- Since techniques used in proofs are rather simple, I will skip all the proofs.
- Take-home messages: The two inequalities are useful to derive almost surely convergence from convergence in probability.
- What about L^{p} convergence?

Hoffmann-Jørgensen's inequality

Theorem (Theorem 3.1.15)

For each $p>0$, if $Y_{i}, i=1, \ldots, n$, are independent symmetric $S B C(T)$ processes, and if $t_{0} \geq 0$ is defined as

$$
t_{0}=\inf \left\{t>0: \operatorname{Pr}\left\{\left\|S_{n}\right\|_{T}>t\right\} \leq 1 / 8\right\}
$$

then

$$
\left\|\left\|S_{n}\right\|_{T}\right\|_{p} \leq 2^{(p+2) / p}(p+1)^{(p+1) / p}\left[4^{1 / p} t_{0}+\left\|Y_{n}^{*}\right\|_{p}\right]
$$

- the L^{p}-norm of a sum of independent symmetric processes is dominated by L^{p}-norm of the maximum of their norms plus a quantile of the sum.
- I intentionally use the notation $\left\|\left\|S_{n}\right\|_{T}\right\|_{p}$, instead $\left\|S_{n}\right\|_{p}$ to keep clear notations.
- The proof is very long... though not difficult.

3.1.4 Symmetrisation, Randomisation, Contraction

Preliminaries

- Though the results in previous section lay theoretical grounds on convergence of random variables, the assumption symmetry is often strong.
- In this section, by invoking symmetrization and randomization, authors weaken the assumption: from symmetric to centered.

A contraction principle

Theorem (Theorem 3.1.17)

For $n \in \mathbb{N}$, let $Y_{i}, i=1, \ldots, n$, be independent $S B C(T)$ processes, let $a_{i}, i \leq n$, be real numbers and let F be a nonnegative, nondecreasing convex function on $[0, \infty)$. Then, if either
(C1) $0 \leq a_{i} \leq 1$ and the process Y_{i} are centered, meaning $E\left(\left\|Y_{i}\right\|_{T}\right)<\infty$ and $E\left(Y_{i}\right)=0$, or
(C2) $\left|a_{i}\right| \leq 1$ and the processes Y_{i} are symmetric,
we have

$$
E\left\{F\left(\left\|\sum_{i=1}^{n} a_{i} Y_{i}\right\|_{T}\right)\right\} \leq E\left\{F\left(\left\|\sum_{i=1}^{n} Y_{i}\right\|_{T}\right)\right\}
$$

A contraction principle (cont'd)

Corollary (Corollary 3.1.18)

For $n \in \mathbb{N}$, let $Y_{i}, i=1, \ldots, n$, be independent $S B C(T)$ processes, let $\left|a_{i}\right| \leq 1, i \leq n$, be real numbers. Then, for all $p \geq 1$,

$$
E\left\{\left\|\sum_{i=1}^{n} a_{i} Y_{i}\right\|_{T}^{p}\right\} \leq 2^{p} E\left\{\left\|\sum_{i=1}^{n} Y_{i}\right\|_{T}^{p}\right\}
$$

- Use $|f+g|^{p} \leq 2^{p-1}\{|f|+|g|\}$ and apply the previous theorem.
- The contraction inequalities are applied to random a_{i} and the most famous random sequence is Rademacher sequences $\left\{a_{i}\right\}_{i=1}^{n}$: $\operatorname{Pr}\left\{a_{i}=1\right\}=\operatorname{Pr}\left\{a_{i}=-1\right\}=1 / 2$ and $a_{i} ' s$ are independent. [Definition 3.1.19].

A contraction principle - random version(cont'd)

Corollary (Corollary 3.1.20)

Let $\left\{\epsilon_{i}\right\}_{i=1}^{n}$ be a Rademacher sequence independent of a sequence $\left\{Z_{i}\right\}_{i=1}^{n}$ consisting of independent $S B C(T)$ processes. Let $C_{i} \subset I_{\infty}(T)$ be such that the variable $\left\|\sum_{i=1}^{n} \tau_{i} Z_{i} I_{Z_{i} \in C_{i}}\right\|_{T}$ is measurable for all choices of $\tau_{i}= \pm 1$. Then, for all $p \geq 1$,

$$
E\left\{\left\|\sum_{i=1}^{n} \epsilon_{i} Z_{i} I_{Z_{i} \in C_{i}}\right\|_{T}^{p}\right\} \leq E\left\{\left\|\sum_{i=1}^{n} \epsilon_{i} Z_{i}\right\|_{T}^{p}\right\}
$$

- Note that combining random variables (Rademacher) ϵ_{i} makes random variables $\epsilon_{i} Z_{i}$ centered.

An extension of the Lévy inequality (Thm. 3.1.11)

Theorem (Theorem 3.1.21)

Let $Y_{i}, i \leq n<\infty$, be independent centered $\operatorname{SBC}(T)$ processes with supremum norms in L^{p} for some $p \geq 1$, and let $\left\{\epsilon_{i}\right\}_{i=1}^{n}$ be a Rademacher sequence independent of a sequence $\left\{Y_{i}\right\}_{i=1}^{n}$. Then,

$$
2^{-p} E\left\{\left\|\sum_{i=1}^{n} \epsilon_{i} Y_{i}\right\|_{T}^{p}\right\} \leq E\left\{\left\|\sum_{i=1}^{n} Y_{i}\right\|_{T}^{p}\right\} \leq 2^{p} E\left\{\left\|\sum_{i=1}^{n} \epsilon_{i}\left(Y_{i}-c_{i}\right)\right\|_{T}^{p}\right\},
$$

for any functions $c_{i}=c_{i}(t)$ defined on T, and

$$
E\left\{\max _{k \leq n}\left\|\sum_{i=1}^{n} Y_{i}\right\|_{T}^{p}\right\} \leq 2^{p+1} E\left\{\left\|\sum_{i=1}^{n} \epsilon_{i} Y_{i}\right\|_{T}^{p}\right\}
$$

Key idea of the proof

Key idea: Symmetrization by ghost samples.
Let $\left\{Y_{i}^{\prime}\right\}$ be a copy (ghost samples) of the sequence $\left\{Y_{i}\right\}$ independent of $\left\{Y_{i}\right\}$ and of the Rademacher sequence, and let E^{\prime} denote integration with respect to these variables only. Then,

$$
\begin{aligned}
E\left\{\left\|\sum_{i=1}^{n} Y_{i}\right\|_{T}^{p}\right\} & =E\left\{\left\|\sum_{i=1}^{n} Y_{i}-E^{\prime}\left(\sum_{i=1}^{n} Y_{i}^{\prime}\right)\right\|_{T}^{p}\right\}=E\left\{\left\|E^{\prime}\left(\sum_{i=1}^{n} Y_{i}-\sum_{i=1}^{n} Y_{i}^{\prime}\right)\right\|_{T}^{p}\right\} \\
& \leq E\left\{\left\|\sum_{i=1}^{n} Y_{i}-\sum_{i=1}^{n} Y_{i}^{\prime}\right\|_{T}^{p}\right\}=E\left\{\left\|\sum_{i=1}^{n}\left(Y_{i}-c_{i}\right)-\sum_{i=1}^{n}\left(Y_{i}^{\prime}-c_{i}\right)\right\|_{T}^{p}\right\} \\
& =E\left\{\left\|\sum_{i=1}^{n} \epsilon_{i}\left\{\left(Y_{i}-c_{i}\right)-\left(Y_{i}^{\prime}-c_{i}\right)\right\}\right\|_{T}^{p}\right\} \\
& \leq 2^{p} E\left\{\left\|\sum_{i=1}^{n} \epsilon_{i}\left(Y_{i}-c_{i}\right)\right\|_{T}^{p}\right\}
\end{aligned}
$$

Extension to centered independent $\operatorname{SBC}(\mathrm{T})$ processes

- The left inequality can be proved by using Corollary 3.1.18.
- Theorem 3.1.22 provides an extension of the Hoffmann-Jørgensen's inequality.
- Next questions:
(i) Can we develop tail probabilities for centered independent $\mathrm{SBC}(\mathrm{T})$ processes as well? (Proposition 3.1.23 and Proposition 3.1.24) (ii) Can we develop the same thing with other symmetric random variables, not Rademacher? (Proposition 3.1.25)

Tail probabilities

Theorem (Proposition 3.1.23)
Let $Y_{i}, i \leq n<\infty$, be independent centered $\operatorname{SBC}(T)$ processes, and let $\left|a_{i}\right| \leq 1$. Then, for all $t>0$,

$$
\operatorname{Pr}\left\{\left\|\sum_{i=1}^{n} a_{i} Y_{i}\right\|_{T}>t\right\} \leq 3 \max _{j \leq n} \operatorname{Pr}\left\{\left\|S_{j}\right\|_{T}>t / 9\right\}
$$

- Note that the inequality is in a bit different form with the Proposition 3.1.12.

Tail probabilities of a $\operatorname{SBC}(T)$ process

Theorem (Proposition 3.1.24)

Let $Y(t), Y^{\prime}(t), t \in T$, be two $S B C(T)$ processes defined on the factors of $\left(\Omega \times \Omega^{\prime}, \Sigma \otimes \Sigma^{\prime}, \operatorname{Pr}=P \times P^{\prime}\right)$; that is, $Y\left(t, \omega, \omega^{\prime}\right)=Y(t, \omega)$ and $Y^{\prime}\left(t, \omega, \omega^{\prime}\right)=Y^{\prime}\left(t, \omega^{\prime}\right)$, for $t \in T, \omega \in \Omega, \omega^{\prime} \in \Omega^{\prime}$. Then, for all $s>0$ and $0<u \leq s$ such that $\sup _{t \in T} \operatorname{Pr}\left\{\left|Y^{\prime}(t)\right| \geq u\right\}<1$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left\{\|Y\|_{T}>s\right\} \\
\leq & \frac{1}{1-\sup _{t \in T} \operatorname{Pr}\left\{\left|Y^{\prime}(t)\right| \geq u\right\}} \operatorname{Pr}\left\{\left\|Y-Y^{\prime}\right\|_{T}>s-u\right\} .
\end{aligned}
$$

Further, if $\theta \geq \sup _{t \in T} E\left[\left\{Y^{\prime}(t)\right\}^{2}\right]$, then for any $s \geq(2 \theta)^{1 / 2}$,

$$
\operatorname{Pr}\left\{\|Y\|_{T}>s\right\} \leq 2 \operatorname{Pr}\left\{\left\|Y-Y^{\prime}\right\|_{T}>s-(2 \theta)^{1 / 2}\right\} .
$$

Tail probabilities of a cummulative sum

Corollary (Corollary 3.1.25)

Let $\left\{Y_{i}^{\prime}\right\}$ be a copy (ghost samples) of the sequence $\left\{Y_{i}\right\}$ independent of $\left\{Y_{i}\right\}$ and of the Rademacher sequence. Let $\sigma^{2}=\sup _{t \in T} E\left\{Y_{i}^{2}(t)\right\}<\infty$. Then for all $s \geq \sqrt{2 n \sigma^{2}}$ and for any real numbers a_{i},

$$
\operatorname{Pr}\left\{\left\|\sum_{i=1}^{n} Y_{i}\right\|_{T}>s\right\} \leq 4 \operatorname{Pr}\left\{\left\|\sum_{i=1}^{n} \epsilon_{i}\left(Y_{i}-a_{i}\right)\right\|_{T}>\left(s-\sqrt{2 n \sigma^{2}}\right) / 2\right\}
$$

